Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Infect Dis ; 99: 92-99, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-2311415

ABSTRACT

OBJECTIVE: To investigate the characteristics and predictive roles of lymphocyte subsets in COVID-19 patients. METHOD: We evaluated lymphocyte subsets and other clinical features of COVID-19 patients, and analyzed their potential impacts on COVID-19 outcomes. RESULTS: 1. Lymphocyte subset counts in the peripheral blood of patients with COVID-19 were significantly reduced, especially in patients with severe disease. 2. In patients with non-severe disease, the time from symptom onset to hospital admission was positively correlated with total T cell counts. 3. Among COVID-19 patients who did not reach the composite endpoint, lymphocyte subset counts were higher than in patients who had reached the composite endpoint. 4. The Kaplan-Meier survival curves showed significant differences in COVID-19 patients, classified by the levels of total, CD8+, and CD4+ T cells at admission. CONCLUSION: Our study showed that total, CD8+, and CD4+ T cell counts in patients with COVID-19 were significantly reduced, especially in patients with severe disease. Lower T lymphocyte subsets were significantly associated with a higher occurrence of composite endpoint events. These subsets may help identify patients with a high risk of composite endpoint events.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Lymphocyte Subsets/physiology , Pneumonia, Viral/immunology , Adult , COVID-19 , Female , Humans , Lymphocyte Count , Male , Middle Aged , Pandemics , SARS-CoV-2
2.
J Med Virol ; 94(7): 3240-3250, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850119

ABSTRACT

To observe the predictive effect of fasting blood glucose (FBG) level on the prognosis, clinical sequelae, and pulmonary absorption in hospitalized coronavirus disease 2019 (COVID-19) patients with and without a history of diabetes, respectively, and to evaluate the correlation between the dynamic changes of FBG and poor prognosis. In this bidirectional cohort study, we enrolled 2545 hospitalized COVID-19 patients (439 diabetics and 2106 without a diabetic history) and followed up for 1 year. The patients were divided according to the level of admission FBG. The dynamic changes of FBG were compared between the survival and the death cases. The prediction effect of FBG on 1-year mortality and sequelae was analyzed. The 1-year all cause mortality rate and in-hospital mortality rate of COVID-19 patients were J-curve correlated with FBG (p < 0.001 for both in the nondiabetic history group, p = 0.004 and p = 0.01 in the diabetic history group). FBG ≥ 7.0 mmol/L had a higher risk of developing sequelae (p = 0.025) and have slower recovery of abnormal lung scans (p < 0.001) in patients who denied a history of diabetes. Multivariable Cox regression analysis showed that FBG ≥ 7.0 mmol/L was an independent risk factor for the mortality of COVID-19 regardless of the presence or deny a history of diabetes (hazard atio [HR] = 10.63, 95% confidence interval [CI]: 7.15-15.83, p < 0.001; HR = 3.9, 95% CI: 1.56-9.77, p = 0.004, respectively). Our study shows that FBG ≥ 7.0 mmol/L can be a predictive factor of 1-year all-cause mortality in COVID-19 patients, independent of diabetes history. FBG ≥ 7.0 mmol/L has an advantage in predicting the severity, clinical sequelae, and pulmonary absorption in COVID-19 patients without a history of diabetes. Early detection, timely treatment, and strict control of blood glucose when finding hyperglycemia in COVID-19 patients (with or without diabetes) are critical for their prognosis.


Subject(s)
COVID-19 , Diabetes Mellitus , Blood Glucose/analysis , COVID-19/complications , Cohort Studies , Disease Progression , Fasting , Humans , Prognosis , Retrospective Studies , Risk Factors
3.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1708201

ABSTRACT

(1) Background: Although there are extensive data on admission co-variates and outcomes of persons with coronavirus infectious disease-2019 (COVID-19) at diverse geographic sites, there are few, if any, subject-level comparisons between sites in regions and countries. We investigated differences in hospital admission co-variates and outcomes of hospitalized people with COVID-19 between Wuhan City, China and the New York City region, USA. (2) Methods: We retrospectively analyzed clinical data on 1859 hospitalized subjects with COVID-19 in Wuhan City, China, from 20 January to 4 April 2020. Data on 5700 hospitalized subjects with COVID-19 in the New York City region, USA, from 1 March to 4 April 2020 were extracted from an article by Richardson et al. Hospital admission co-variates (epidemiological, demographic, and laboratory co-variates) and outcomes (rate of intensive care unit [ICU] admission, invasive mechanical ventilation [IMV], major organ failure and death, and length of hospital stay) were compared between the cohorts. (3) Results: Wuhan subjects were younger, more likely female, less likely to have co-morbidities and fever, more likely to have a blood lymphocyte concentration > 1 × 109/L, and less likely to have abnormal liver and cardiac function tests compared with New York subjects. There were outcomes data on all Wuhan subjects and 2634 New York subjects. Wuhan subjects had higher blood nadir median lymphocyte concentrations and longer hospitalizations, and were less likely to receive IMV, ICU hospitalization, and interventions for kidney failure. Amongst subjects not receiving IMV, those in Wuhan were less likely to die compared with New York subjects. In contrast, risk of death was similar in subjects receiving IMV at both sites. (4) Conclusions: We found different hospital admission co-variates and outcomes between hospitalized persons with COVID-19 between Wuhan City and the New York region, which should be useful developing a comprehensive global understanding of the SARS-CoV-2 pandemic and COVID-19.

4.
IUBMB Life ; 73(10): 1244-1256, 2021 10.
Article in English | MEDLINE | ID: covidwho-1328599

ABSTRACT

The 1-year mortality and health consequences of COVID-19 in cancer patients are relatively underexplored. In this multicenter cohort study, 166 COVID-19 patients with cancer were compared with 498 non-cancer COVID-19 patients and 498 non-COVID cancer patients. The 1-year all-cause mortality and hospital mortality rates in Cancer COVID-19 Cohort (30% and 20%) were significantly higher than those in COVID-19 Cohort (9% and 8%, both P < .001) and Cancer Cohort (16% and 2%, both P < 0.001). The 12-month all-cause post-discharge mortality rate in survival discharged Cancer COVID-19 Cohort (8%) was higher than that in COVID-19 Cohort (0.4%, P < .001) but similar to that in Cancer Cohort (15%, P = .084). The incidence of sequelae in Cancer COVID-19 Cohort (23%, 26/114) is similar to that in COVID-19 Cohort (30%, 130/432, P = .13). The 1-year all-cause mortality was high among patients with hematologic malignancies (59%), followed by those who have nasopharyngeal, brain, and skin tumors (45%), digestive system neoplasm (43%), and lung cancers (32%). The rate was moderate among patients with genitourinary (14%), female genital (13%), breast (11%), and thyroid tumors (0). COVID-19 patients with cancer showed a high rate of in-hospital mortality and 1-year all-cause mortality, but the 12-month all-cause post-discharge mortality rate in survival discharged cancer COVID-19 patients was similar to that in Cancer Cohort. Comparing to COVID-19 Cohort, risk stratification showed that hematologic, nasopharyngeal, brain, digestive system, and lung tumors were high risk (44% vs 9%, P < 0.001), while genitourinary, female genital, breast, and thyroid tumors had moderate risk (10% vs 9%, P = .85) in COVID-19 Cancer Cohort. Different tumor subtypes had different effects on COVID-19. But if cancer patients with COVID-19 manage to survive their COVID-19 infections, then long-term mortality appears to be similar to the cancer patients without COVID-19, and their long-term clinical sequelae were similar to the COVID-19 patients without cancer.


Subject(s)
COVID-19/mortality , Neoplasms/complications , Aged , COVID-19/complications , COVID-19/virology , Cohort Studies , Female , Hospital Mortality , Humans , Male , SARS-CoV-2/isolation & purification
6.
Leukemia ; 34(9): 2384-2391, 2020 09.
Article in English | MEDLINE | ID: covidwho-655388

ABSTRACT

The impact of cancer on outcome of persons with coronavirus disease 2019 (COVID-19) after infection with acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is controversial. We studied 1859 subjects with COVID-19 from seven centers in Wuhan, China, 65 of whom had cancer. We found having cancer was an independent risk factor for in-hospital death from COVID-19 in persons <65 years (hazard ratio [HR] = 2.45, 95% confidence interval [CI], 1.04, 5.76; P = 0.041) but not in those ≥65 years (HR = 1.12 [0.56, 2.24]; P = 0.740). It was also more common in those not in complete remission. Risks of in-hospital death were similar in subjects with solid cancers and those with hematological cancers. These data may help predict outcomes of persons with cancer and COVID-19.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/complications , Pneumonia, Viral/mortality , Adult , Age Factors , Aged , Betacoronavirus , COVID-19 , China , Coronavirus Infections/complications , Female , Hospital Mortality , Humans , Male , Middle Aged , Neoplasms/mortality , Pandemics , Pneumonia, Viral/complications , Remission Induction , Risk Factors , SARS-CoV-2
7.
Leukemia ; 34(8): 2173-2183, 2020 08.
Article in English | MEDLINE | ID: covidwho-601049

ABSTRACT

We studied 1859 subjects with confirmed COVID-19 from seven centers in Wuhan 1651 of whom recovered and 208 died. We interrogated diverse covariates for correlations with risk of death from COVID-19. In multi-variable Cox regression analyses increased hazards of in-hospital death were associated with several admission covariates: (1) older age (HR = 1.04; 95% Confidence Interval [CI], 1.03, 1.06 per year increase; P < 0.001); (2) smoking (HR = 1.84 [1.17, 2.92]; P = 0.009); (3) admission temperature per °C increase (HR = 1.32 [1.07, 1.64]; P = 0.009); (4) Log10 neutrophil-to-lymphocyte ratio (NLR; HR = 3.30 [2.10, 5.19]; P < 0.001); (5) platelets per 10 E + 9/L decrease (HR = 0.996 [0.994, 0.998]; P = 0.001); (6) activated partial thromboplastin (aPTT) per second increase (HR = 1.04 [1.02, 1.05]; P < 0.001); (7) Log10 D-dimer per mg/l increase (HR = 3.00 [2.17, 4.16]; P < 0.001); and (8) Log10 serum creatinine per µmol/L increase (HR = 4.55 [2.72, 7.62]; P < 0.001). In piecewise linear regression analyses Log10NLR the interval from ≥0.4 to ≤1.0 was significantly associated with an increased risk of death. Our data identify covariates associated with risk of in hospital death in persons with COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Biomarkers/blood , Coronavirus Infections/mortality , Lymphocytes/pathology , Mortality/trends , Neutrophils/pathology , Pneumonia, Viral/mortality , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Prognosis , ROC Curve , Risk Factors , SARS-CoV-2 , Survival Rate
8.
Leukemia ; 34(8): 2163-2172, 2020 08.
Article in English | MEDLINE | ID: covidwho-595636

ABSTRACT

We studied admission and dynamic demographic, hematological and biochemical co-variates in 1449 hospitalized subjects with coronavirus infectious disease-2019 (COVID-19) in five hospitals in Wuhan, Hubei province, China. We identified two admission co-variates: age (Odds Ratio [OR] = 1.18, 95% Confidence Interval [CI] [1.02, 1.36]; P = 0.026) and baseline D-dimer (OR = 3.18 [1.48, 6.82]; P = 0.003) correlated with an increased risk of death in persons with COVID-19. We also found dynamic changes in four co-variates, Δ fibrinogen (OR = 6.45 [1.31, 31.69]; P = 0.022), Δ platelets (OR = 0.95 [0.90-0.99]; P = 0.029), Δ C-reactive protein (CRP) (OR = 1.09 [1.01, 1.18]; P = 0.037), and Δ lactate dehydrogenase (LDH) (OR = 1.03 [1.01, 1.06]; P = 0.007) correlated with an increased risk of death. The potential risk factors of old age, high baseline D-dimer, and dynamic co-variates of fibrinogen, platelets, CRP, and LDH could help clinicians to identify and treat subjects with poor prognosis.


Subject(s)
Betacoronavirus/isolation & purification , Biomarkers/blood , Coronavirus Infections/mortality , Hematologic Diseases/blood , Mortality/trends , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , C-Reactive Protein/analysis , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Female , Fibrin Fibrinogen Degradation Products/analysis , Follow-Up Studies , Hematologic Diseases/diagnosis , Hematologic Diseases/virology , Humans , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Lymphocytes/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Prognosis , SARS-CoV-2 , Severity of Illness Index , Survival Rate
9.
Leukemia ; 34(6): 1637-1645, 2020 06.
Article in English | MEDLINE | ID: covidwho-116679

ABSTRACT

Infection with SARS-CoV-2, the cause of coronavirus infectious disease-19 (COVID-19), has caused a pandemic with >850,000 cases worldwide and increasing. Several studies report outcomes of COVID-19 in predominately well persons. There are also some data on COVID-19 in persons with predominately solid cancer but controversy whether these persons have the same outcomes. We conducted a cohort study at two centres in Wuhan, China, of 128 hospitalised subjects with haematological cancers, 13 (10%) of whom developed COVID-19. We also studied 226 health care providers, 16 of whom developed COVID-19 and 11 of whom were hospitalised. Co-variates were compared with the 115 subjects with haematological cancers without COVID-19 and with 11 hospitalised health care providers with COVID-19. There were no significant differences in baseline co-variates between subjects with haematological cancers developing or not developing COVID-19. Case rates for COVID-19 in hospitalised subjects with haematological cancers was 10% (95% Confidence Interval [CI], 6, 17%) compared with 7% (4, 12%; P = 0.322) in health care providers. However, the 13 subjects with haematological cancers had more severe COVID-19 and more deaths compared with hospitalised health care providers with COVID-19. Case fatality rates were 62% (32, 85%) and 0 (0, 32%; P = 0.002). Hospitalised persons with haematological cancers have a similar case rate of COVID-19 compared with normal health care providers but have more severe disease and a higher case fatality rate. Because we were unable to identify specific risk factors for COVID-19 in hospitalised persons with haematological cancers, we suggest increased surveillance and possible protective isolation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Hematologic Neoplasms/complications , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Pneumonia, Viral/complications , Adult , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Hematologic Neoplasms/epidemiology , Humans , Incidence , Male , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL